Macroscopic and microscopic properties of magnetically frustrated Tb₂Ti₂O₇

Y. Chapuis, P. Dalmas de Réotier, <u>A. Yaouanc</u>, C. Marin, S. Vanishri, A. Forget, V. Glazkov, S. Sosin, L.-P. Regnault, B. Fåk, C. Baines,* A. Amato,* P.J.C. King[†]

> CEA/Grenoble, France *Paul Scherrer Institute, Switzerland [†]ISIS facility, UK

Groupement de Recherche Matériaux et Interaction en COmpétition Aspet, 12-15 octobre 2009

Outline

Introduction

Geometrical magnetic frustration The puzzle of $Tb_2Ti_2O_7$

Experimental results

Sample preparation and characterization Nature of the lowest crystal field levels from entropy variation Spin dynamics

Conclusion and Outlook

Geometrical magnetic frustration

It arises when all pairwise interactions in a system cannot be satisfied simultaneously due to the geometry of the system

 Antiferromagnetically coupled Heisenberg spins on a pyrochlore lattice do not order down to T = 0

Importance of other interactions:

- exchange interactions with further neighbors
- dipolar interaction
- single ion anisotropy
- etc

Example: spin ice state

Three spins with antiferromagnetic interactions.

Pyrochlore crystal structure.

The puzzle of $Tb_2Ti_2O_7$

- Pyrochlore crystal structure
- Ising type anisotropy, but Tb₂Ti₂O₇ is a spin liquid, not a spin ice!
- Theory including Ising anisotropy, nearest neighbor exchange and dipolar coupling predicts order below ~ 1 K

(B.C. den Hertog and M.J.P. Gingras Phys. Rev. Lett. $\label{eq:stars} \textbf{84} \ \textbf{3430} \ (\textbf{2000}))$

 Even more sophisticated theories, e.g. including ground and first excited CEF states, fail to catch the essential features of Tb₂Ti₂O₇

M.J.P. Gingras et al, Phys. Rev. B 62 6496 (2000)

Spin liquid correlations

2

J.S. Gardner et al, Phys. Rev. Lett. 82 1012 (1999)

Crystal growth of Tb₂Ti₂O₇

Growth conditions of different crystals

crystals	initial powders	growth rate, flow
A	$TiO_2 + Tb_4O_7$	8 mm/h, argon
В	$TiO_2 + Tb_4O_7$	8 mm/h, argon
С	$TiO_2 + Tb_2O_3$	7 mm/h, oxygen
D	$TiO_2 + Tb_4O_7$	3 & 8 mm/h, argon

Typical x-ray powder diffraction pattern.

No foreign phase detected.

Susceptibility and magnetization of Tb₂Ti₂O₇

- Above 2 K, susceptibility independent of sample
- Slight differences in low temperature magnetization

Specific heat of $Tb_2Ti_2O_7$

Specific heat of $Tb_2Ti_2O_7$

œ

Specific heat of Tb₂Ti₂O₇

Our data

- Low temperature specific heat very sensitive to crystal growth conditions
- Transition at ~ 0.4 K seems related to crystal growth velocity
- Comparison with published data

N. Hamaguchi et al, Phys. Rev. B 69 132413 (2004)

Crystal field levels of Tb³⁺ in Tb₂Ti₂O₇

J.S. Gardner et al, Phys. Rev. B 64 224416 (2001)

Crystal field levels of Tb³⁺ in Tb₂Ti₂O₇

J.S. Gardner et al, Phys. Rev. B 64 224416 (2001)

Two low-lying doublets at 0 and 18 K.

Crystal field levels of Tb^{3+} in $Tb_2Ti_2O_7$

J.S. Gardner et al, Phys. Rev. B 64 224416 (2001)

Two low-lying doublets at 0 and 18 K.

I. Mirebeau *et al*, Phys. Rev. B **76** 184436 (2007) Indication for an extra CEF level around 2 K.

Entropy variation and CEF levels

- First hypothesis: two doublets separated by an energy Δ.
 - For $T \gg \Delta$: $S = R \log 4$
 - For $T \ll \Delta$: $S = R \log 2$
 - Entropy variation: $\Delta S = R(\log 4 - \log 2) = R \log 2$

Entropy variation and CEF levels

- First hypothesis: two doublets separated by an energy Δ.
 - For $T \gg \Delta$: $S = R \log 4$
 - For $T \ll \Delta$: $S = R \log 2$
 - Entropy variation: $\Delta S = R(\log 4 - \log 2) = R \log 2$

- Second hypothesis: two singlets separated by energy δ and two other levels at higher energy $\simeq \Delta$
 - For $T \gg \Delta$: $S = R \log 4$
 - For $T \ll \delta$: $S = R \log 1 = 0$
 - Entropy variation:
 - $\Delta S = R \log 4$

Entropy variation and CEF levels

- First hypothesis: two doublets separated by an energy Δ.
 - For $T \gg \Delta$: $S = R \log 4$
 - For $T \ll \Delta$: $S = R \log 2$
 - Entropy variation: $\Delta S = R(\log 4 - \log 2) = R \log 2$

- Second hypothesis: two singlets separated by energy δ and two other levels at higher energy $\simeq \Delta$
 - For $T \gg \Delta$: $S = R \log 4$
 - For $T \ll \delta$: $S = R \log 1 = 0$
 - Entropy variation:
 ΔS = R log 4

Entropy variation from T = 0.13 K to $+\infty$

Entropy variation in $Tb_2Ti_2O_7$

Entropy variation in Tb₂Ti₂O₇

Entropy variation in $Tb_2Ti_2O_7$

$$\Delta S(T_1 \rightarrow T_2) = \int_{T_1}^{T_2} \frac{C_{\rm m}}{T} \, \mathrm{d} T$$

Entropy variation consistent with levels at 0, 1.8, 18 and 18 K \rightarrow the lowest levels are two singlets

Spin dynamics in $Tb_2Ti_2O_7$

Inelastic neutron scattering experiments (IN12 at Institut Laue Langevin, Grenoble)

Spin dynamics in $Tb_2Ti_2O_7$

Inelastic neutron scattering experiments (IN12 at Institut Laue Langevin, Grenoble)

Three contributions to the low energy intensity:

- quasi-elastic scattering (Lorentzian of width Γ)
- weakly inelastic signal (CEF transition)
- incoherent scattering

Spin dynamics in $Tb_2Ti_2O_7$

Inelastic neutron scattering experiments (IN12 at Institut Laue Langevin, Grenoble)

Three contributions to the low energy intensity:

- quasi-elastic scattering (Lorentzian of width Γ)
- weakly inelastic signal (CEF transition)
- incoherent scattering

Spin dynamics in Tb₂Ti₂O₇

Muon spin relaxation measurements (ISIS, UK and S μ S at PSI, Switzerland)

Exponential-power relaxation:

 $P_Z(t) = \exp[-(\lambda_Z t)^{\beta}]$ Below $T \simeq 2$ K, $\beta > 1$

Spin dynamics in Tb₂Ti₂O₇

Muon spin relaxation measurements (ISIS, UK and S μ S at PSI, Switzerland)

Exponential-power relaxation: $P_Z(t) = \exp[-(\lambda_Z t)^{\beta}]$ Below $T \simeq 2$ K, $\beta > 1$

Conclusion and Outlook

- Issues in sample preparation
- Specific heat is a sensitive probe
- Entropy variation: two singlets as lower energy CEF levels
- Two characteristic temperatures in the spin dynamics
 - above 50 K: relaxation through high energy CEF levels
 - ▶ below 2 K: slowing down of Tb³⁺ fluctuations

Further work

- Insight into the difference in samples
- Checking that microscopic probe results are robust
- Influence of the presence of two low-lying singlets on current models
- Why is Tb₂Ti₂O₇ so different from sister compound Tb₂Sn₂O₇ ?

Influence of higher energy CEF levels on entropy variation

Simulated specific heat

Simulated entropy variation

Susceptibility of $Tb_2M_2O_7$

No magnetic order down to 50 mK

M.J.P. Gingras et al, Phys. Rev. B 62 6496 (2000)

Specific heat and entropy variation in $Tb_2Sn_2O_7$

Entropy variation consistent consistent with levels at 0, 2.5, 17 and 17 K.